Vault
OpenLDAP Secrets Engine
The OpenLDAP secret engine allows management of LDAP entry passwords as well as dynamic creation of credentials. This engine supports interacting with Active Directory which is compatible with LDAP v3.
This plugin currently supports LDAP v3.
Quick Setup
Enable the OpenLDAP secret engine:
$ vault secrets enable openldap
By default, the secrets engine will mount at the name of the engine. To enable the secrets engine at a different path, use the
-path
argument.Configure the credentials that Vault uses to communicate with OpenLDAP to generate passwords:
$ vault write openldap/config \ binddn=$USERNAME \ bindpass=$PASSWORD \ url=ldaps://138.91.247.105
Note: it's recommended a dedicated entry management account be created specifically for Vault.
Rotate the root password so only Vault knows the credentials:
$ vault write -f openldap/rotate-root
Note: it's not possible to retrieve the generated password once rotated by Vault. It's recommended a dedicated entry management account be created specfically for Vault.
Password Generation
This engine previously allowed configuration of the length of the password that is generated
when rotating credentials. This mechanism was deprecated in Vault 1.5 in favor of
password policies. This means the length
field should
no longer be used. The following password policy can be used to mirror the same behavior
that the length
field provides:
length=<length>
rule "charset" {
charset = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
}
Static Roles
Setup
Configure a static role that maps a name in Vault to an entry in OpenLDAP. Password rotation settings will be managed by this role.
$ vault write openldap/static-role/hashicorp \ dn='uid=hashicorp,ou=users,dc=hashicorp,dc=com' \ username='hashicorp' \ rotation_period="24h"
Request credentials for the "hashicorp" role:
$ vault read openldap/static-role/hashicorp
LDAP Password Policy
The OpenLDAP secret engine does not hash or encrypt passwords prior to modifying values in LDAP. This behavior can cause plaintext passwords to be stored in LDAP.
To avoid having plaintext passwords stored, the LDAP server should be configured with an LDAP password policy (ppolicy, not to be confused with a Vault password policy). A ppolicy can enforce rules such as hashing plaintext passwords by default.
The following is an example of an LDAP password policy to enforce hashing on the
data information tree (DIT) dc=hashicorp,dc=com
:
dn: cn=module{0},cn=config
changetype: modify
add: olcModuleLoad
olcModuleLoad: ppolicy
dn: olcOverlay={2}ppolicy,olcDatabase={1}mdb,cn=config
changetype: add
objectClass: olcPPolicyConfig
objectClass: olcOverlayConfig
olcOverlay: {2}ppolicy
olcPPolicyDefault: cn=default,ou=pwpolicies,dc=hashicorp,dc=com
olcPPolicyForwardUpdates: FALSE
olcPPolicyHashCleartext: TRUE
olcPPolicyUseLockout: TRUE
Schema
The OpenLDAP Secret Engine supports three different schemas: openldap
(default),
racf
and ad
.
OpenLDAP
By default the OpenLDAP Secret Engine assumes the entry password is stored in userPassword
.
The following object classes provide userPassword
:
Resource Access Control Facility (RACF)
For managing IBM's Resource Access Control Facility (RACF) security system, the secret
engine must be configured to use the schema racf
.
Generated passwords must be 8 characters or less to support RACF. The length of the password can be configured using a password policy:
$ vault write openldap/config \
binddn=$USERNAME \
bindpass=$PASSWORD \
url=ldaps://138.91.247.105 \
schema=racf \
password_policy=racf_password_policy
Active Directory (AD)
For managing Active Directory instances, the secret engine must be configured to use the
schema ad
.
$ vault write openldap/config \
binddn=$USERNAME \
bindpass=$PASSWORD \
url=ldaps://138.91.247.105 \
schema=ad
Password Rotation
Passwords can be managed in two ways:
- automatic time based rotation, and
- manual rotation.
Auto Password Rotation
Passwords will automatically be rotated based on the rotation_period
configured
in the static role (minimum of 5 seconds). When requesting credentials for a static
role, the response will include the time before the next rotation (ttl
).
Auto-rotation is currently only supported for static roles. The binddn
account used
by Vault should be rotated using the rotate-root
endpoint to generate a password
only Vault will know.
Manual Rotation
Static roles can be manually rotated using the rotate-role
endpoint. When manually
rotated the rotation period will start over.
Deleting Static Roles
Passwords are not rotated upon deletion of a static role. The password should be manually rotated prior to deleting the role or revoking access to the static role.
Dynamic Credentials
Setup
Dynamic credentials can be configured by calling the /role/:role_name
endpoint:
$ vault write openldap/role/dynamic-role \
creation_ldif=@/path/to/creation.ldif \
deletion_ldif=@/path/to/deletion.ldif \
rollback_ldif=@/path/to/rollback.ldif \
default_ttl=1h \
max_ttl=24h
Note: The rollback_ldif
argument is optional, but recommended. The statements within rollback_ldif
will be
executed if the creation fails for any reason. This ensures any entities are removed in the event of a failure.
To generate credentials:
$ vault read openldap/cred/dynamic-role
Key Value
--- -----
lease_id openldap/cred/dynamic-role/HFgd6uKaDomVMvJpYbn9q4q5
lease_duration 1h
lease_renewable true
distinguished_names [cn=v_token_dynamic-role_FfH2i1c4dO_1611952635,ou=users,dc=learn,dc=example]
password xWMjkIFMerYttEbzfnBVZvhRQGmhpAA0yeTya8fdmDB3LXDzGrjNEPV2bCPE9CW6
username v_token_testrole_FfH2i1c4dO_1611952635
The distinguished_names
field is an array of DNs that are created from the creation_ldif
statements. If more than
one LDIF entry is included, the DN from each statement will be included in this field. Each entry in this field
corresponds to a single LDIF statement. No de-duplication occurs and order is maintained.
LDIF Entries
User account management is provided through LDIF entries. The LDIF entries may be a base64-encoded version of the LDIF string. The string will be parsed and validated to ensure that it adheres to LDIF syntax. A good reference for proper LDIF syntax can be found here.
Some important things to remember when crafting your LDIF entries:
- There should not be any trailing spaces on any line, including empty lines
- Each
modify
block needs to be preceded with an empty line - Multiple modifications for a
dn
can be defined in a singlemodify
block. Each modification needs to close with a single dash (-
)
Active Directory (AD)
For Active Directory, there are a few additional details that are important to remember:
To create a user programmatically in AD, you first add
a user object and then modify
that user to provide a
password and enable the account.
Passwords in AD are set using the
unicodePwd
field. This must be proceeded by two (2) colons (::
).When setting a password programatically in AD, the following critera must be met:
- The password must be enclosed in double quotes (
" "
) - The password must be in
UTF16LE
format - The password must be
base64
-encoded - Additional details can be found here
- The password must be enclosed in double quotes (
Once a user's password has been set, it can be enabled. AD uses the
userAccountControl
field for this purpose:- To enable the account, set
userAccountControl
to512
- You will likely also want to disable AD's password expiration for this dynamic user account. The
userAccountControl
value for this is:65536
userAccountControl
flags are cumulative, so to set both of the above two flags, add up the two values (512 + 65536 = 66048
): setuserAccountControl
to66048
- See here
for details on
userAccountControl
flags
- To enable the account, set
sAMAccountName
is a common field when working with AD users. It is used to provide compatibility with legacy
Windows NT systems and has a limit of 20 characters. Keep this in mind when defining your username_template
.
See here for additional details.
With regard to adding dynamic users to groups, AD doesn't let you directly modify a user's memberOf
attribute.
The member
attribute of a group and memberOf
attribute of a user are
linked attributes. Linked attributes are
forward link/back link pairs, with the forward link able to be modified. In the case of AD group membership, the
group's member
attribute is the forward link. In order to add a newly-created dynamic user to a group, we also
need to issue a modify
request to the desired group and update the group membership with the new user.
Active Directory LDIF Example
The various *_ldif
parameters are templates that use the go template
language. A complete LDIF example for creating an Active Directory user account is provided here for reference:
dn: CN={{.Username}},OU=HashiVault,DC=adtesting,DC=lab
changetype: add
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
userPrincipalName: {{.Username}}@adtesting.lab
sAMAccountName: {{.Username}}
dn: CN={{.Username}},OU=HashiVault,DC=adtesting,DC=lab
changetype: modify
replace: unicodePwd
unicodePwd::{{ printf "%q" .Password | utf16le | base64 }}
-
replace: userAccountControl
userAccountControl: 66048
-
dn: CN=test-group,OU=HashiVault,DC=adtesting,DC=lab
changetype: modify
add: member
member: CN={{.Username}},OU=HashiVault,DC=adtesting,DC=lab
-
API
The OpenLDAP secrets engine has a full HTTP API. Please see the OpenLDAP secrets engine API docs for more details.